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Abstract
Herein, we present a bird’s eye view of common observational study designs utilized for measurement of vaccine effectiveness. 
Assessing vaccines effectiveness is an integral part of vaccine research, particularly for the newly developed vaccines. A cohort 
study is prospective, directing from an exposure to one or more outcomes. The design is the best method to ascertain the attack 
rate of an infectious disease. A traditional case-control study is retrospective, directing from a given outcome to one or more 
exposures. The design cannot provide the relative risk, but it can provide the odds ratio, which is a good estimation of the relative 
risk when the attack rate is low. Critically depending on laboratory test results and performance, the test-negative case-control 
study design is another type of observational study commonly used nowadays for the evaluation of the vaccine effectiveness. 
Comparing to cohort and traditional case-control designs, conducting a test-negative case-control study is relatively cheaper 
and faster. Herein, we describe each of the above-mentioned study designs through examples generated by a Monte-Carlo 
simulation program assuming real-world conditions. Conclusion. The simulation shows that regardless of the study design 
employed, the diagnostic test specificity is of utmost importance in providing a valid estimate of the vaccine effectiveness.

Key Words: Vaccines  Research Design  Cohort Studies  Case-Control Studies  SARS-CoV-2.

Introduction

For every new vaccine, the vaccine effectiveness 
(VE ), an index reflecting the measure of infection 
or disease risk reduction attributable to vaccina-
tion among vaccinated individuals compared with 
unvaccinated people under real-world situations, 
should be determined to figure out the future vac-
cination policy and strategy to be implemented. 
The VE is defined as:

 (Eq 1)

* ORCID: 0000-0001-5360-2900

where ARunvac and ARvac represent the attack rates 
of the infection in the unvaccinated and vaccinat-
ed individuals, respectively, and RR is the relative 
risk (1, 2). The gold standard study designs to de-
termine the VE are the randomized clinical trial 
and cohort studies (3). In such studies, the AR of 
the infection is evaluated after a period of time, say 
3 months after vaccination, in the two groups of 
vaccinated and unvaccinated individuals who had 
been either randomized into two groups (in a ran-
domized clinical trial) to abolish the effect of con-
founding variables, or at least matched for known 
important confounders (in a cohort study).

Although clinical trials are the best study de-
sign to measure VE, under certain circumstances, 
for ethical concerns, we are not able to conduct 
clinical trials; for instance, it is unethical not to 
vaccinate a susceptible person with exposure to 
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an infectious agent for which an approved vaccine 
is available. Therefore, we need to conduct obser-
vational studies to determine the VE under more 
realistic situations in wider population groups in 
whom the VE may differ from that observed in 
clinical trials for several reasons including dif-
ference in the geographic parameters, sub-popu-
lations not included or under-represented in the 
original trials (e.g., children and pregnant wom-
en), sub-optimal consideration of the cold-chain 
necessary for optimal effectiveness of the vaccine, 
incomplete vaccination, incorrect time spacing be-
tween the vaccine doses administered, emergence 
of new variants of the infectious agent, and many 
other factors (4, 5). 

In this review, we will discuss the pros and cons 
of common observational studies used to determine 
VE. To better understand the issue, we first over-
view the study designs, present examples through 
using a simulation program, and finally describe a 
new type of case-control study, the so-called test-
negative case-control (TNCC) study that has be-
come common to use for the assessment of VE.

Setting

Suppose we want to study an arbitrarily chosen 
population of 2 000 000 individuals (for example, 
the population of a city like Shiraz) and that we 
have vaccinated a hypothetical fraction of 40% 
of the people against an infectious agent. Let the 
true VE after 3 months of vaccination be 0.70 and 
that we use a diagnostic test with a test sensitivity 
(Se) of 60% and a specificity (Sp) of 100% for the 
detection of the infection. Furthermore, suppose 
that the infected people present with signs and 
symptoms similar to a flu and that there is another 
flu-like illness that might also affect people living 
in the study community, independent of whether 
they have already been affected by the infection of 
interest or not. Also, assume that the infection has 
an AR of 15% in unvaccinated individuals (con-
sistent with the AR of influenza) (6); and that the 
AR of the flu-like illness is 30% (consistent with 
the attack rates of non-influenza flu-like illness 
seen during a cold season) (7, 8). To make things 

simple, let us assume that the AR of the flu-like ill-
ness is independent of vaccination status against 
the infection of interest, duration since vaccina-
tion, age of people, and other variables. Now, sup-
pose we want to estimate the VE of an influenza 
vaccine using various observational study designs.

Observational Studies

Clinical research studies can be classified into two 
broad categories — observational and interven-
tional studies (9). In observational studies, the 
researcher just observes; no intervention occurs. 
Observational studies can further be categorized 
into longitudinal and cross-sectional studies, based 
on how the observations are made over the study 
period. Two important longitudinal observational 
studies are cohort and case-control studies (9).

Cohort

In a cohort study, two groups of individuals with 
and without exposure to a certain agent (e.g., a 
vaccine) are followed for a certain period of time. 
The two groups are similar in (theoretically, per-
fectly matched for) all other variables but their 
exposure (10). In its simplest form, we compare 
the experience of the exposed group with that of 
the unexposed group and measure the incidence 
of a certain outcome in the two groups. If the inci-
dence of the outcome in one group is significantly 
different from that in other group, then we con-
clude that there should be an association between 
the exposure and outcome of interest (10). Cohort 
studies are prospective — directing from an expo-
sure to one or more outcomes.

Suppose that the disease of interest is influ-
enza, and that a random sample of 50 vaccinated 
(exposed) and 50 unvaccinated (unexposed) in-
dividuals was taken from the above-mentioned 
population (Figure 1A). For the sake of simplicity, 
let us assume that the two groups were perfectly 
matched for other variables. The first five columns 
(Figure 1A) represent the exposed individuals; the 
remaining, unexposed. Let us define the outcome 
of interest as presence of influenza ascertained by 
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a diagnostic test (a positive test). Suppose that the 
100 study participants were followed for 3 months 
and that 10 of whom were found test positive, 
which translated into an AR of 10% in 3 months. 
In other words, the risk of infection within 3 
months, regardless of vaccination status, was 10%. 
Two (4%) out of 50 of the exposed (vaccinated) 
participants and 8 (16%) of 50 of unexposed (un-
vaccinated) individuals developed the outcome of 
interest (a positive test result). The AR of the infec-
tion was therefore 4% in the exposed and 16% in 
the unexposed group (Table 1B). The unexposed 
group carried a 4-fold (= 16%/4%) increase in the 
risk of infection as compared with the vaccinated 
group. In other words, vaccination decreased the 
risk of infection by 75%, the estimated VE.

Table 1. Test Results Stratified by Vaccination Status in 
Various Study Designs

A) General template
Disease*

Present Absent

Vaccinated a b a+b

Unvaccinated c d c+d

a+c b+d n

B) Cohort
Disease*

Present Absent

Vaccinated 2 48 50

Unvaccinated 8 d 50

10 90 100

C) Traditional  
Case-Control

Disease*

Present Absent

Vaccinated 8 23

Unvaccinated 42 27

50 50 100

D) Test-Negative 
Case-Control

Test

Positive Negative

Vaccinated 2 32

Unvaccinated 11 55

13 87 100

A) a 2×2 contingency table, the general template for various study designs 
of n participants, and examples for samples of 100 individuals using B) co-
hort; C) traditional case-control; D) test-negative case-control studies associ-
ated with Figure 1; *The status was determined by using a diagnostic test (or 
a battery of tests).

Let us examine the general parametric form of 
a cohort study of n participants (Table 1A). Then 
we can write:

 

(Eq 2)

where AR is the marginal risk of infection in 
the whole study participants, regardless of vacci-
nation status, and a, b, c, and d are Table cell values 
(Table 1A). In the same way, we can calculate the 
AR in the vaccinated and unvaccinated groups:

 (Eq 3)

and

 (Eq 4)

The RR is:

 (Eq 5)

When the outcome is something like hospital-
ization or death, recognizing the outcome is easy. 
However, when the outcome is a variable like pres-
ence or absence of a certain disease, identifying 
the outcome is not always that easy. Normally, we 
rely on diagnostic test (or a battery of tests) results 
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to classify people into diseased and undiseased 
groups. Depending on the distribution of test re-
sults, test Se and Sp, and the prevalence of the dis-
ease, levels of uncertainty would be introduced. 
In our example, we missed 4 cases of influenza (3 
gray and 1 red squares in Figure 1A) for having 
false-negative test results. This would affect the es-
timated risks in the two study groups and the VE. 
Having a test Sp of 100%, no false-positive result 
occurred.

The required minimum sample size for a co-
hort study being conducted for the measurement 
of VE is a function of the anticipated VE and the 
desired width of its confidence interval, the per-
centage of the vaccine coverage, and presumed AR 
in the unvaccinated group (5, 11). The minimum 
sample size can be calculated using a calculator 
available online (12).

A cohort study has several advantages. It is the 
best type of study design for the measurement of 
the incidence (AR, incidence, risk) of a given out-
come (e.g., a disease) under certain conditions. The 
temporal sequence of events is typically clear and 
one can usually make a cause-and-effect inference 
and ascertain the natural history of a disease. With 
this design, it is possible to measure risks of sev-
eral outcomes (e.g., infection, hospitalization, and 
death) and their association with a given exposure 
(e.g., vaccination). The design is also very good to 
assess the risk of rare exposures (10). However, it 

Figure 1.  Examples generated by the simulation program based on the 
assumptions made in the Setting section of the article: 100-individual 
samples taken from a 2 000 000-individual population with a vaccina-
tion coverage of 40%. The test had a sensitivity of 60% and specific-
ity of 100% for the detection of influenza (the outcome); attack rate 
of 15% in unvaccinated individuals for influenza, (6) and 30% for the 
flu-like illness (7, 8). A) Cohort study design: The left-most 5 columns 
are vaccinated; the remaining, unvaccinated. Those with a positive test 
are indicated. Others were test-negative. 4 individuals with influenza 
(3 gray and 1 red squares) had false-negative test results. B) Traditional 
case-control study design: The left-most 5 columns are test-positive 
individuals (considered cases); others were test-negative (controls). 
One of the test-negative individuals in the control group (1 red square) 
had really influenza (a false-negative test result). C) Test-negative case-
control study design: Note that all 100 individuals have flu-like illness. 
5 individuals with influenza (5 gray squares) had false-negative test re-
sults. The test specificity was 100%, hence, no false-positive result was 
obtained.
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has some disadvantages. Following a large cohort 
for a long period of time is expensive. The inten-
sity of follow-up should be equal in the two study 
groups, which is not always possible. Many of the 
study participants may be lost to follow up. Some 
of the participants in one group may decide to 
switch to another group (e.g., an unvaccinated per-
son may decide to receive the vaccine). Matching 
of the study groups for the important covariates 
and controlling of the known confounding vari-
ables are not always easy. And, the design is not 
appropriate for rare outcomes (10). Generally, co-
hort studies are more efficient in situations where 
the incidence of outcome is higher than the preva-
lence of exposure (13).

Case-Control
Case-control study design is retrospective. It be-
gins with a certain outcome (e.g., presence of an 
infection) and returns back in time to examine the 
level of exposure to one or more factors (e.g., vac-
cination status) of those with the outcome (cases) 
and without the outcome (controls). The cases 
and controls are similar in (theoretically, perfectly 
matched for) all other variables but the status of 
the outcome (13). In a case-control study, because 
we are typically not aware of the real proportion 
of the cases and controls in the population, we are 
not able to estimate the risk (incidence and AR) in 
the two groups and the RR; instead, we compare 
odds of exposure in the two groups and calculate 
the odds ratio (OR), as follows (Table 1A): 

 (Eq 6)

If the AR is low (i.e., a ≪ b ∧ c ≪ d), then 
b ≈ a + b and d ≈ c + d, OR is an acceptable estima-
tion for RR (Eq 6), and VE can be calculated as 
1 – OR (2). 

Suppose a random sample of 50 diseased (de-
fined as test-positive individuals) and 50 undis-
eased (test-negative) people from the above-men-
tioned population was taken (Figure 1B, Table 
1C). The OR (Eq 6) is then:

 (Eq 7)

The estimated VE after 3 months of vaccination 
was then 0.78 (= 1 – 0.22). Depending on the test 
results distribution and performance, and the prev-
alence of the disease of interest, false-positive and 
false-negative results may occur. In our example, 
we had one false-negative individual (Figure 1B).

The required minimum sample size for a case-
control study being conducted for the measure-
ment of VE is a function of the anticipated VE 
and the desired width of its confidence interval, 
and the presumed prevalence of vaccination in the 
control (undiseased) group (5, 11). The minimum 
sample size can be calculated using a calculator 
available online (12).

The case-control design has several advantag-
es. It is the most efficient study design in terms of 
time and money spent, and efforts made (13). The 
design is especially appropriate for rare outcomes; 
this makes sense if we consider that for observing 
a rare outcome, a researcher conducting a cohort 
study should have normally follow a large group of 
people for a long period of time. In a case-control 
study we can begin with a given outcome and ex-
amine one or more exposures. However, the design 
is not appropriate when the exposure frequency is 
low. In measuring the VE, the AR is usually accept-
ably low and case-control studies would give satis-
factory estimates. Although it is usually easier to 
conduct a case-control study compared to a cohort 

≪ ≪
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study, conducting the investigation could still be 
labor-intensive — intense efforts are still needed to 
identify and recruit the controls from the popula-
tion (13).

Test-Negative Case-Control (TNCC)

A TNCC study design technically has a case-con-
trol design. The only difference is the way the cases 
and controls are recruited. It seems that the first 
complete description of the method dates back to 
1985, when Miettinen mentioned the methodol-
ogy in his book (14). The method has widely been 
used for measuring influenza VE, first employed 
by Skowronski in Canada in 2004–2005 (15). The 
design has been frequently used thereafter, most 
commonly for assessing the VE (16-20).

In a TNCC study, a group of people referred to 
a healthcare center for a reason, say complaining 
of flu-like illness, is considered the study sample. 
All test-positive individuals are considered “cases;” 
test-negative individuals, “controls.” The exposure 
(vaccination) status is then ascertained in the two 
groups (21). 

Suppose a sample of 100 patients complaining 
of a flu-like illness referred to a healthcare center 
was taken (Figure 1C, Table 1D). A diagnostic test 
was then performed for each of the study partici-
pants to ascertain whether they had the infection 
of interest or not. The 13 test-positive individuals 
(2 orange and 11 gray squares in Figure 1C) were 
considered cases; the remaining 87 (= 100 – 13), 
controls. The individuals were then asked about 
their vaccination status (exposure, Table 1D). As 
in traditional case-control study design, the OR 
can be calculated as:

 (Eq 8)

The VE after 3 months of vaccination was then 
0.69 (= 1 – 0.31).

The TNCC design has all the advantages and 
disadvantages of traditional case-controls (e.g., 
outcome misclassification, recall bias). We ob-
served 5 diseased individuals with false-negative 
test results, misclassified to the control group 
(Figure 1C). The study design, however, has the 
advantage of reducing the effect of difference in 
health-care seeking behavior between the exposed 
and unexposed groups (3-5, 16). TNCC study is 
relatively cheaper and faster to conduct in com-
parison with cohort and traditional case-control 
studies (16).

Monte-Carlo Simulation

R software version 4.1.0 (R Project for Statistical 
Computing) was used for simulation. The pseudo-
code of the program is presented in Table 2 (see 
Appendix for the R codes). The simulation param-
eters were initially set to the values described ear-
lier (see Setting). 

The estimated VE derived from a study with 
a sample size of 100, although more appropriate 
for presentation as a graph (Figure 1), would be 
associated with high degrees of uncertainties due 
to sampling error. The simulation program was 
therefore run with a sample size of 10 000 indi-
viduals, keeping other parameters the same (Table 
2), which resulted in estimated VE values of 0.686, 
0.705, and 0.710 for cohort, traditional case-con-
trol, and TNCC designs, respectively (Table 3).

To obtain more accurate results, we repeated 
the above in silico experiments of 10 000 individu-
als for different combinations of the test Se (vary-
ing from 60% to 100%) and Sp (varying from 80% 
to 100%) for 1000 times, and reported the mean of 
VE (Figure 2). The simulation was performed for 
AR of 15% for unvaccinated individuals, compat-
ible with the AR of influenza (6); and an AR of 5% 
for SARS-CoV-2 infection (5).

As expected, cohort design gave the most ac-
curate estimates provided using a highly specific 
diagnostic test. Results obtained from traditional 
case-control design and TNCC design were very 
similar (Figure 2). The test Sp was more important 
than the Se.
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Table 2. The Pseudocode of the Simulation Program* 

Begin
Make a population of 2 000 000 individuals, 40% of whom were vaccinated; 
15%, had the disease; and 30%, had a flu-like illness

Loop for various values of Se and Sp
Determine the test status of each individual in the population based on Se and Sp
# Cohort

Loop for 1000 times

Choose at random from the population, 5000 vaccinated and 5000 unvaccinated individuals

Calculate the RR based on the test status

VE = 1 – RR
End Loop
# Traditional Case-Control

Loop for 1000 times

Choose at random from the population, 5000 diseased and 5000 undiseaded individuals

Calculate the OR based on the test status

VE = 1 – OR
End Loop
# Test-Negative Case-Control

Loop for 1000 times

Choose at random from the population, 10 000 individuals with flu-like illness

Calculate the OR based on the test status

VE = 1 – OR
End Loop

End Loop
Draw the results as a graph

End

*See Appendix for the R codes.

Table 3. Test Results Stratified by Vaccination Status in 10 000-individual 
Samples Using Different Study Designs 

A) Cohort
Disease*

Present Absent

Vaccinated 136 4864 5000

Unvaccinated 433 4567 5000

569 9431 10 000

B) Traditional Case-Control
Disease*

Present Absent

Vaccinated 874 2089

Unvaccinated 4126 2911

10 000

C) Test-Negative Case-Control
Test

Positive Negative

Vaccinated 113 3901

Unvaccinated 543 5443

10 000

A) cohort;  B) traditional case-control;  C) test-negative case-control; *The status was deter-
mined by using a diagnostic test (or a battery of tests).
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Discussion
It was found that cohort studies are superior to 
other observational designs for the evaluation of 
VE. This is because only a cohort study can accu-
rately determine the AR of the disease in the vac-
cinated and unvaccinated groups. A case-control 
study can only provide OR as an estimate for RR. 
However, this assumption is only true when the 
AR is considerably low (Eq 6). Given the low AR 
for many infectious disease (e.g., influenza and 
SARS-CoV-2), the calculated OR is not much dif-
ferent from the RR and thus a case-control study 
can also give a satisfactory estimate for the VE. 
Furthermore, using logistic regression analysis, 
the OR can be adjusted for various confounding 
variables to give an adjusted VE (22). This is in 
keeping with our results; for an AR of 15% (Figure 
2, left panel), the VE estimates derived from the 

two studied case-control designs overestimated 
the true VE; with a lower AR of 5%, these studies 
gave estimates closer to the real VE. 

The TNCC design has the advantage over co-
hort and traditional case-control studies for be-
ing less expensive and faster to conduct (16). In 
keeping with our simulation results, numerous in 
silico studies have also shown that the design can 
provide estimates of VE in good agreement with 
those of cohort and traditional case-control stud-
ies provided that a highly specific diagnostic test is 
used (2, 6). Fortunately, the tests commonly used 
for the diagnosis of influenza and SARS-CoV-2 in-
fections have a Sp of almost 100% (23, 24); most 
of the published studies using the TNCC design 
have used highly specific diagnostic tests (25, 26). 
Considering the cardinal importance of the test 
Sp in the validity of the VE obtained from TNCC 

Figure 2. Vaccine effectiveness derived from in silico studies simulating various study types under different conditions. The 
horizontal dash-dotted gray line represents the true vaccine effectiveness. The results are mean values of the vaccine effec-
tiveness derived from 1000 repetitions of a Monte-Carlo simulation (Table 2). Each time, 10 000 individuals were examined 
under combinations of the test sensitivity (varying from 0.6 to 1 [i.e., 60% to 100%]) and specificity (varying from 0.8 to 1 
[i.e., 80% to 100%]). The simulation was performed for attack rates of A) 15% for unvaccinated individuals, compatible with 
the that of influenza (6); and B) 5%, for SARS-CoV-2 infection (5). In both situations, the results obtained are satisfactory 
when the test specificity is almost 1 (i.e., 100%).
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design, it is prudent to use higher cut-off values in 
the interpretation of tests with quantitative results 
used to classify the cases and controls (27).

Limitations of the Study 

Our study has several limitations. The simulation 
was limited by its simplicity; it overlooked many 
important factors. As an example, it was assumed 
that the AR of flu-like illness was independent of 
vaccination and disease status, age of people, and 
other variables. This was of course not the case in 
real life. In this way, selection of cases and controls 
from the subpopulation of people with flu-like ill-
ness, as it was done in the TNCC study, was practi-
cally equivalent to selecting cases and controls from 
the source population. That is why the traditional 
case-control and the TNCC designs provided al-
most similar results (Figure 2). If a test with a Sp 
of nearly 100% is utilized, almost no false-positive 
result would occur. However, if a person had had 
the infection of interest before vaccination, the test 
might remain positive for a long time, even when 
there is no active infection (28). Another situation 
that makes things complicated is usage of different 
vaccines (as in case of vaccination in some people 
against SARS-CoV-2). More complex simulations 
are necessary to address these limitations and pro-
vide more realistic results. Nevertheless, in this ar-
ticle we just intended to provide a bird’s eye view 
of the designs commonly used in assessing the VE, 
not to provide an in-depth review of these methods.

In a nutshell, the TNCC design, which has re-
cently been frequently used in assessing the VE, 
may reduce but not eliminate the effect of all con-
founding variables and selection bias due to dif-
ferential recall of the exposure compared with tra-
ditional case-control design (16, 29). The chief ad-
vantage of TNCC over cohort and traditional case-
control studies is the fact that it does not require 
much resources and it can be conducted during 
a relatively short period of time; it can be nested 
in routine surveillance without any concerns re-
garding the validity of the estimates derived. The 
design is not only commonly used in assessing 
the VE, but can also be utilized to measure risks 

in other settings such as antibiotic resistance (30), 
and venous thrombosis (31), to name only a few 
other applications. Using logistic regression analy-
sis or stratification, the obtained estimated OR can 
be adjusted for important confounding variables 
(22). Although the method seems to be easy to do, 
it should be used with caution as the design suffers 
from all the limitations mentioned for observa-
tional studies (9, 10, 13, 32, 33). The TNCC design 
provides a unique opportunity for the interdisci-
plinary collaboration between laboratory sciences 
and epidemiology considering the important ca-
veats in both areas of investigation.
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APPENDIX

The Simulation Program in R

library(“ggplot2”)
library(“ggh4x”)

N <- 2000000       # Population size
v_coverage <- 0.4  # Vaccine coverage
n <- 5000          # Sample size (in each group)
rep <- 1000        # Number of repetitions
AR <- 0.15         # Attack Rate in unvaccinated
AR_ill <- 0.30     # Attack Rate of flu-like illness
se <- 0.60         # Test sensitivity
sp <- 1.00         # Test specificity
VE <- 0.70         # Vaccine effectiveness

set.seed(123)
dat <- data.frame(dis = rep(0, N), Vac = rep(0, N), ill = rep(0, N))  

dat$Vac[1:round(v_coverage*N)] <- 1 
dat <- dat[sample(nrow(dat)),]       # Shuffle dat
dat$ill[1:round(AR_ill*N)] <- 1 

len <- length(dat[dat$Vac == 0,]$dis)
dat[dat$Vac == 0,]$dis <- ifelse(runif(len, 0, 1) < AR, 1, 0)

len <- length(dat[dat$Vac == 1,]$dis)
dat[dat$Vac == 1,]$dis <- ifelse(runif(len, 0, 1) < AR*(1-VE), 1, 0)

dat$Vac = factor(dat$Vac, labels=c(“Unvaccinated”, “Vaccinated”))
dat$dis = factor(dat$dis, labels=c(“Undiseased”, “Diseased”))
dat$ill = factor(dat$ill, labels=c(“Not ill”, “Ill”))

dat_ve <- data.frame(AR = NA, se = NA, sp = NA, VE = NA, CI_lo = NA, CI_hi = NA, study = NA)

ve <- rep(NA, rep)
for (se in seq(1.0, 0.6, by = -0.2)){      #-- for test sensitivity from 0.6 to 1.0
  for (sp in seq(1.0, 0.8, by = -0.025)){  #-- for test specificity from 0.8 to 1.0
    dat_dis <- dat[dat$dis == “Diseased”,]
    dat_dis$test <- ifelse(runif(nrow(dat_dis), 0, 1) < se, 1, 0)

    dat_undis <- dat[dat$dis == “Undiseased”,]
    dat_undis$test <- ifelse(runif(nrow(dat_undis), 0, 1) < sp, 0, 1)

    dat <- rbind(dat_dis, dat_undis)
    dat$test = factor(dat$test, labels=c(“Negative”, “Positive”))

#--------------------------------------------------------------------------------------------

#--- Cohort
    dat_vac <- dat[dat$Vac == “Vaccinated”,]
    dat_unvac <- dat[dat$Vac == “Unvaccinated”,]
    if (nrow(dat_vac) < n | nrow(dat_unvac) < n){
      print(“Cohort: Sample size too high!”)
    }

    for (i in 1:rep){
      #-----------         Exposed      --------------------       Unexposed
      d <- rbind(dat_vac[sample(nrow(dat_vac), n), ], dat_unvac[sample(nrow(dat_unvac), n), ])
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      t <- table(d$Vac, d$test)
      #-- 1-RR
      ve[i] <- 1-(t[2, 2]/(t[2, 1] + t[2, 2])) / (t[1, 2]/(t[1, 1] + t[1, 2]))
    }
    dat_ve <- rbind(dat_ve, data.frame(AR = AR, se = se, sp = sp,
            VE = mean(ve, na.rm=TRUE), CI_lo = as.numeric(quantile(ve, 0.025, na.rm=TRUE)),
            CI_hi = as.numeric(quantile(ve, 0.975, na.rm=TRUE)), study = “Coh”))

#--------------------------------------------------------------------------------------------

#--- Traditional Case-Control
    dat_dis <- dat[dat$test == “Positive”,]      #-- Cases
    dat_undis <- dat[dat$test == “Negative”,]    #-- Controls
    if (nrow(dat_dis) < n | nrow(dat_undis) < n){
      print(“Case-Control: Sample size too high!”)
    }

    for (i in 1:rep){
      #-----------         Diseased     --------------------       Undiseased
      d <- rbind(dat_dis[sample(nrow(dat_dis), n), ], dat_undis[sample(nrow(dat_undis), n), ])
      t <- table(d$Vac, d$test)
      #-- 1-OR
      ve[i] <- 1-(t[2, 2]/t[1, 2]) / (t[2, 1]/t[1, 1])
    }
    dat_ve <- rbind(dat_ve, data.frame(AR = AR, se = se, sp = sp,
            VE = mean(ve, na.rm=TRUE), CI_lo = as.numeric(quantile(ve, 0.025, na.rm=TRUE)),
            CI_hi = as.numeric(quantile(ve, 0.975, na.rm=TRUE)), study = “CC”))

#--------------------------------------------------------------------------------------------

#--- Test-Negative Case-Control 
    d_ill <- dat[dat$ill == “Ill”,]             # Include only ill people
    OR <- rep(NA, rep)

    for (i in 1:rep){
      d <- d_ill[sample(nrow(d_ill), 2*n),]
      t <- table(d$Vac, d$test)
      #-- 1-OR
      ve[i] <- 1-(t[2, 2]/t[1, 2]) / (t[2, 1]/t[1, 1])
    }
    dat_ve <- rbind(dat_ve, data.frame(AR = AR, se = se, sp = sp,
            VE = mean(ve, na.rm=TRUE), CI_lo = as.numeric(quantile(ve, 0.025, na.rm=TRUE)),
            CI_hi = as.numeric(quantile(ve, 0.975, na.rm=TRUE)), study = “TNCC”))
  }
}
dat_ve <- dat_ve[-1, ]
write.csv(dat_ve, file = “VE.csv”, row.names = FALSE)

#----------------- Graphs Figure 2
#dat_ve <- read.csv(“VE.csv”)

dat_ve$study <- factor(dat_ve$study, levels = c(“Coh”, “CC”, “TNCC”),
                               labels = c(“Cohort”, “Traditional\nCase-Control”,
                                                  “Test-Negative\nCase-Control”))

ggplot(dat_ve, aes(x = sp, color = as.factor(se), fill = as.factor(se),
         linetype = as.factor(study))) +
  geom_hline(yintercept = 0.70, color = “gray70”, linetype=”dotdash”) +
  geom_line(aes(y = VE), size = 0.9, alpha = 0.6) +
  geom_point(aes(y = VE), size = 2.5, alpha=0.6) +
  xlab(“Test Specificity”) +
  theme_classic() +
  guides(x = “axis_truncated”, y = “axis_truncated”) +
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  scale_linetype_manual(values = c(“dotted”, “longdash”, “solid”)) +
  scale_y_continuous(name=”Vaccine Effectiveness”, 
         breaks=seq(0.2, 0.8, by = 0.1)) +
  theme(aspect.ratio = 6/4,
  legend.position = c(0.97, 0.03), legend.key.width=unit(1.2,”cm”),
  legend.key.height=unit(0.9,”cm”),
  legend.justification = c(“right”, “bottom”),
  legend.text = element_text(size = rel(0.9)),
  axis.text = element_text(size = rel(1.3), color = “black”),
  axis.title = element_text(size = rel(1.9))) +
  guides(color=guide_legend(title=”Test Sensitivity”, order = 1),
         fill=guide_legend(title=”Test Sensitivity”, order = 1), 
         linetype=guide_legend(title=”Study Type”, order = 2))


